E cient Estimation for the Proportional Hazards Model with Case Interval Censoring
نویسندگان
چکیده
Maximum likelihood estimation for the proportional hazards model with interval censored data is considered The estimators are computed by pro le likelihood methods using Groeneboom s iterative convexminorant algorithm Under appropriate regularity conditions the maximum likelihood estimator for the regression parameter is shown to be asymptotically normal and e cient Two approaches for estimation of the variance covariance matrix for the estimated regression parameter are proposed one uses the inverse of the observed information matrix another uses the curvature of the pro le likelihood function An example is given to illustrate the proposed methods
منابع مشابه
Inference for the Proportional Hazards Family under Progressive Type-II Censoring
In this paper, the well-known proportional hazards model which includes several well-known lifetime distributions such as exponential,Pareto, Lomax, Burr type XII, and so on is considered. With both Bayesian and non-Bayesian approaches , we consider the estimation of parameters of interest based on progressively Type-II right censored samples. The Bayes estimates are obtained based on symmetric...
متن کاملCox Regression for Current Status Data with Missing Covariates
Statistical inference based on the right-censored data for proportional hazard (PH) model with missing covariates has received considerable attention, but interval-censored or current status data with missing covariates are not yet investigated. Our study is partly motivated by analysis of fracture data from a cross-sectional study, where the ocurrence time of fracture was interval-censored and...
متن کاملNonparametric Locally Efficient Estimation of the Treatment Specific Survival Distribution with Right Censored Data and Covariates in Observational Studies
In many observational studies one is concerned with comparing treatment specific survival distributions in the presence of confounding factors and censoring. In this paper we develop locally efficient point and interval estimators of these survival distributions which adjust for confounding by using an estimate of the propensity score and concurrently allow for dependent censoring. The proposed...
متن کاملSemiparametric analysis of transformation models with censored data
A unified estimation procedure is proposed for the analysis of censored data using linear transformation models, which include the proportional hazards model and the proportional odds model as special cases. This procedure is easily implemented numerically and its validity does not rely on the assumption of independence between the covariates and the censoring variable. The estimator is the sam...
متن کاملInterval Censored Survival Data : A Review of Recent
We review estimation in interval censoring models, including nonparametric estimation of a distribution function and estimation of regression models. In the non-parametric setting, we describe computational procedures and asymptotic properties of the nonparametric maximum likelihood estimators. In the regression setting, we focus on the proportional hazards, the proportional odds and the accele...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995